

4.	writing the differential equation in standard form gives		
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{x}{x-1}y = \mathrm{e}^{-x}$	MI	
	$\int \frac{x}{x-1} dx = \int \left(1 + \frac{1}{x-1}\right) dx = x + \ln(x-1)$	MIAI	
	hence integrating factor is $e^{x+\ln(x-1)} = (x-1)e^x$	MIAI	
	hence, $(x-1)e^x \frac{dy}{dx} + xe^x y = x-1$	(41)	
	$\Rightarrow \frac{d[(x-1)e^x y]}{dx} = x - 1$	(A1)	
	$\Rightarrow (x-1)e^{x}y = \int (x-1)dx$	A1	
Souge Overne	\Rightarrow $(x-1)e^{x}y = \frac{x^{2}}{2} - x + c$	A1	
	substituting $(0, 1), c = -1$	(M1)A1	
	$\Rightarrow (x-1)e^{x}y = \frac{x^{2}-2x-2}{2}$	(A1)	
	hence, $y = \frac{x^2 - 2x - 2}{2(x - 1)e^x}$ (or equivalent)	AI	
		[1	13 marks

Mar 3-10:10 AM

Mar 17-12:23 PM

Mar 17-12:23 PM

IBHL 14-2 Dot Product in 3D (3_3-15-3_4_15) (1).notebook

Mar 17-12:23 PM

Mar 17-12:23 PM

Mar 17-12:23 PM

IBHL 14-2 Dot Product in 3D (3_3-15-3_4_15) (1).notebook

March 07, 2015

Ex4. Find the direct on cosines for the vector v = 12i- 5j + 13k and then approximate the direct on angles to the nearest degree. ((*) find direction cosines for v = 12i - 5j + 13k and then approximate the direction angles to the nearest degree 12i - 5j + 13k12k = 12k = 1

Mar 17-12:23 PM

pg 642 # 1ab, 2-5, 9, 11-15, 21, 23, 24, 27, 29-32, 34

Mar 17-12:23 PM